Microstructure based estimation of the dynamic drag impedance of lightweight fibrous materials.

نویسندگان

  • B P Semeniuk
  • P Göransson
چکیده

This paper focusses on the prediction of one of the main mechanisms of acoustic attenuation, the dynamic drag impedance, of a bundle of fibres typical of lightweight fibrous porous materials. The methodology uses geometrical properties derived from microscopy, and is based on the assumption that the interaction between the shear stress fields of neighbouring fibres may be neglected in the predicted drag force of an individual fibre. An analytical procedure is discussed which provides an estimate of the drag forces acting on infinite longitudinal and transversely orientated cylinders oscillating sinusoidally in a viscous incompressible fluid of infinite extent, at rest. The frequency-dependent viscous drag forces are estimated from the shear stresses on the surface of the cylinders, and may be scaled in terms of fibre diameter distributions and orientation angles in order to predict the dynamic drag impedance of a real material. The range of validity for this modelling approach is assessed through finite element solutions of three different fibre arrangements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element simulation of microstructure evolution during friction stir welding of automotive aluminum parts

7000 series Aluminum alloys are widely used in the automotive industries for structural lightweight components due to their exceptional high strength to weight ratio. However, this class of aluminum alloy is difficult to join by conventional fusion welding techniques so Friction stir welding (FSW) widely is used for welding this alloys. The process has been demonstrated to be effective and is c...

متن کامل

Modified Impedance-Based OOS Protection Based on On-Line Thévenin Equivalent Estimation

In this paper, a novel approach based on the Thévenin tracing is presented to modified conventional impedance-based out-of-step (OOS) protection. In conventional approach, the OOS detection is done by measuring positive sequence impedance. However, the measured impedance may be change due to different factors such as capacitor bank switching and reactive power compensators that it can cause the...

متن کامل

A New High Frequency Grid Impedance Estimation Technique for the Frequency Range of 2 to150 kHz

Grid impedance estimation is used in many power system applications such as grid connected renewable energy systems and power quality analysis of smart grids. The grid impedance estimation techniques based on signal injection uses Ohm’s law for the estimation. In these methods, one or several signal(s) is (are) injected to Point of Common Coupling (PCC). Then the current through and voltage of ...

متن کامل

Variable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic

In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...

متن کامل

Impedance Spectroscopy Study of the Effect of Environmental Conditions on the Microstructure Development of Sustainable Fly Ash Cement Mortars

Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 141 3  شماره 

صفحات  -

تاریخ انتشار 2017